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Abstract 

Background Our previous study suggests that tumor CD8+ T cells and macrophages (defined as CD68+ cells) infil-
tration underwent dynamic and heterogeneous changes during concurrent chemoradiotherapy (CCRT) in cervical 
cancer patients, which correlated with their short-term tumor response. This study aims to develop a CT image-based 
radiomics signature for such dynamic changes.

Methods Thirty cervical squamous cell carcinoma patients, who were treated with CCRT followed by brachytherapy, 
were included in this study. Pre-therapeutic CT images were acquired. And tumor biopsies with immunohistochem-
istry at primary sites were performed at baseline (0 fraction (F)) and immediately after 10F. Radiomics features were 
extracted from the region of interest (ROI) of CT images using Matlab. The LASSO regression model with ten-fold 
cross-validation was utilized to select features and construct an immunomarker classifier and a radiomics signature. 
Their performance was evaluated by the area under the curve (AUC).

Results The changes of tumor-infiltrating CD8+T cells and macrophages after 10F radiotherapy as compared 
to those at baseline were used to generate the immunomarker classifier (AUC= 0.842, 95% CI:0.680–1.000). Addition-
ally, a radiomics signature was developed using 4 key radiomics features to predict the immunomarker classifier 
(AUC=0.875, 95% CI:0.753-0.997). The patients stratified based on this signature exhibited significant differences 
in treatment response (p = 0.004).

Conclusion The radiomics signature could be used as a potential predictor for the CCRT-induced dynamic alterations 
of CD8+ T cells and macrophages, which may provide a less invasive approach to appraise tumor immune status dur-
ing CCRT in cervical cancer compared to tissue biopsy.
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Introduction
The tumor microenvironment (TME) refers to the inter-
nal and external environment of tumor cells, including 
abundant infiltrating immune cells along with inflamma-
tory cytokines. The TME plays an important role in the 
growth and metastasis of tumors. Recently, a consider-
able amount of evidence has demonstrated that immune 
status is closely associated with tumor progression and 
the patient’s prognosis [1–7]. A previous study showed 
that the number of infiltrating neutrophils was corre-
lated with infiltrating CD8+ T cells in muscle-invasive 
urinary bladder cancer. Also, high infiltration of neu-
trophils is associated with an immunosuppressive state, 
shorter survival time, and poor clinical outcomes [5]. 
In patients with high-grade glioma, a decrease of CD4+ 
T-cells and an increase of regulatory T cells drive resist-
ance towards immunotherapy [2]. Moreover, most iden-
tified biomarkers reflect the immune characteristics of 
TME [8]. Among them, tumor-infiltrating immune cells 
and expression of immune-related molecules had been 
confirmed to be effective biomarkers reflecting the sta-
tus of the TME [9, 10]. High expression levels of immune 
checkpoints might suggest an immunosuppressive TME 
resulting in tumor cell evasion of immune attack [11]. 
Thus, immune-related biomarkers of the TME are asso-
ciated with tumor prognostic outcomes and therapeutic 
efficacy.

Traditionally, surgery, chemotherapy, and radiotherapy 
are the main clinical treatments for malignant tumors. 
Besides killing tumor cells directly, radiation therapy 
(RT) can activate the immune response of patients 
through multiple mechanisms, including the generation 
of neoantigens, activation of dendritic cells, and pro-
duction of interferon. In addition, immunotherapy has 
advanced in recent years, especially immune checkpoint 
blockade (ICB) therapy, which has emerged as the main 
therapeutic option for cancer [12–15]. Hence, when RT 
enhances immune responses and turns cold tumors into 
hot tumors by changing the TME, ICB may improve the 
overall therapeutic efficacy when combined with RT [16]. 
Unfortunately, only a small proportion of patients benefit 
from the combination of ICB and RT [17–19]. One of the 
main reasons may be the lack of immune infiltration in 
TME, the so-called “cold tumor” [20].

In our previous study, the population of CD8+ T lym-
phocytes in TME exhibited different trends before and 
after 10F radiotherapy in cervical cancer (CC). High 
CD8+ T cells infiltration was correlated with increased 
IRF1 expression in the nucleus of tumor cells and better 
short-term outcomes, and there was a positive associa-
tion between the expression of PD‐L1 and IRF1 in tumor 
cells. The tumor-infiltrating macrophages (defined as 
CD68+ cells) also displayed heterogeneous responses 

to concurrent chemoradiotherapy (CCRT) [21]. Thus, 
evaluation of the immune cell infiltration in TME and the 
immune-related gene expression during chemoradiother-
apy may predict the therapeutic response and help select 
subgroups of patients that are more likely to benefit from 
immunotherapy.

Because tumor-associated immune responses hap-
pen in a short duration after RT, prompt tissue biopsies 
obtained at various times may be required to reveal the 
changes in the TME [22]. As the most common gyneco-
logic tumor, CC serves as an ideal model to approach this 
problem, characterized by its strong immunogenicity 
and relative accessibility for biopsy. So, we developed an 
immunomarker classifier by screening 13 immune bio-
markers in CC before treatment and after 10F of radio-
therapy. The biomarker expression has to be determined 
by immunohistochemistry performed after tissue sam-
ple extraction, and the focal lesion gradually shrinks or 
even disappears after radiotherapy and/or chemotherapy. 
These limit its clinical application. Therefore, a non-
invasive, timely, and efficient predictor for this immu-
nomarker classifier is needed.

As an emerging technique, radiomics have been mainly 
applied in the early diagnosis, differential diagnosis [23, 
24], staging [25, 26], prognosis, and treatment evaluation 
[27–31] of tumors, which have demonstrated improved 
diagnostic and predictive performance compared to con-
ventional imaging techniques. It is found that radiomics 
could also effectively predict the immune status [32, 33]. 
Concentrating on the fields of radiomics and oncology 
[34–36], we believe that radiomics has the potential to 
predict this immunomarker classifier. To our knowledge, 
a radiomics signature based on immune scores for assess-
ment of the infiltration of immune cells in TME and the 
expressions of immune checkpoint genes has not been 
well established.

In this study, we identified the biomarkers and estab-
lished an immunomarker classifier by using mathemati-
cal models to evaluate the CCRT-induced alterations in 
CD8+ T cells and macrophages. Furthermore, we built 
a radiomics signature based on this immune model to 
assess the dynamic changes in tumor-infiltrating CD8+ T 
cells and macrophages in CC patients during CCRT.

Methods
Study design and patients
The study enrolled a cohort of 30 consecutive patients 
treated at the Cancer Hospital of Shantou University 
Medical College. All these patients matched the follow-
ing inclusion criteria: (a) pathologically confirmed pri-
mary cervical squamous cell carcinoma (FIGO stages 
IB3, IIA2, IIB-IVA); (b) received CCRT; (c) standard 
contrast-enhanced pelvic CT and MRI scans performed 
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within 14 days before CCRT; (d) availability of primary 
tumor biopsy during the period of CCRT. The exclu-
sion criteria were as follows: (a) history of antitumor 
therapy (immunotherapy and radiotherapy that would 
cause overlapping of planned radiotherapy fields); (b)
history of autoimmune diseases; (c) concurrent immu-
notherapy during radiotherapy; (d) contraindications 
for biopsy; (e) tumor lesions could not be distinguished 
by CT.

Enrolled patients received external beam radiation 
therapy (EBRT) and platinum-based concurrent chemo-
therapy followed by brachytherapy (see detailed regimens 
in the supplement). Before treatment, patients under-
went essential examinations including tumor biopsy, 
blood tests and other examinations for tumor staging 
and pretreatment assessment. Another tumor biopsy and 
complete blood count were obtained instantly after 10F 
of radiotherapy. Cervical biopsies were obtained from the 
superior portion of the ectocervix using biopsy forceps 
(2-5 pieces, no less than 2*2 mm tissue). After the whole 
course of pelvic EBRT, short-term response to CCRT in 
patients was evaluated in accordance with the RECIST 
1.0 version. Complete response (CR) was defined as the 
absence of cervical lesions as assessed by the bimanual 
examination. Partial response (PR) was defined as at least 
a 30% decrease in the lesion maximum diameter com-
pared with the baseline.

Clinical and hematological data, such as age, FIGO 
staging, platelet count (PLT), absolute neutrophil count 
(ANC), absolute monocyte count (AMC), and absolute 
lymphocyte count (ALC), were derived from medical 
records. The neutrophil-lymphocyte ratio (NLR) was cal-
culated as the ratio of ANC to ALC, platelet neutrophil 
ratio (PNR) as the ratio of APC to ANC, platelet lympho-
cyte ratio (PLR) as the ratio of APC to ALC, and lympho-
cyte monocyte ratio (LMR) as the ratio of ALC to AMC. 
Using the receiver operating characteristic (ROC) curves 
and the Youden Index, the optimal cutoff scores for 
hematological features were determined based on their 
association with the response to the CCRT. The size of 
the primary tumor and LN status were recorded in the 
clinical radiological report. Patients with visible regional 
LN > 1cm in the maximal short-axis diameter and/or 
clusters of ≥ 3 lymph nodes were identified as clinically 
LN-positive.

The FIGO staging was classified according to the 
revised 2018 International Federation of Gynecology 
and Obstetrics (FIGO) staging system for CC. Ethi-
cal approval was obtained from the clinical study ethics 
committee in the Cancer Hospital of Shantou University 
Medical College (Shantou, P.R. China), and all patients 
were informed consent. This study complied with the 
Declaration of Helsinki.

IHC staining and construction of immunomarker classifier
Immunohistochemical staining and evaluation were 
processed as previously described [21]. We calculated 
the changes of expression of 13 immune biomark-
ers after 10F-RT, including infiltrating CD8+T cells, 
infiltrating CD68+ cells, and 11 IFN-responsive mol-
ecules (PD-L1, SERPINB9, CD47, nuclear IRF1, nuclear 
STAT1, HLA-A, HLA-B/C, β2M, TAP1, LMP2 and 
LMP7) in tumor cells. The least absolute shrinkage 
and selection operator (LASSO) regression model was 
used to determine the most useful predictive features 
out of all the 13 immune features, and then we gener-
ated a multi-immune markers-based classifier to pre-
dict patients’ response to CCRT [37]. To demonstrate 
the stability of this model, we applied internal ten-fold 
cross-validation [38, 39]. The LASSO logistic regres-
sion model was analyzed with the “glmnet” R package.

CT acquisition and VOI delineation
The pretreatment contrast-enhanced computed tomog-
raphy scan (Philips Brilliance CT Big Bore Oncology 
Configuration, Cleveland, OH, USA; voxel size: 1.0 × 
1.0 × 5.0 mm; scan voltage: 120 kV; convolution kernel: 
Philips Healthcare’s B) was conducted for each patient. 
Patients received a cubital vein injection of iodinated 
contrast agent (IODAMEPOLE, 70-80ml, 1.8-2.0ml/s, 
22-25s) prior to scanning. Portal venous-phase images 
were transmitted to Varian Eclipse TPS (Treatment 
Planning System), and then the volume of interest 
(VOI) was segmented by a senior radiation oncologist 
with 15 years of experience. In our study, the VOI cov-
ered the entire gross volume of the primary tumor and 
the whole uterus.

Feature extraction, selection, and radiomics signature 
construction
From the VOI of each patient, a total of 97 image features 
were extracted using in-house software implemented in 
MATLAB (version R2016a, MathWorks, Natick, USA). 
The radiomics features could be separated into 3 types: 
24 intensity CT features, 20 geometric, and 53 textural 
features (detail in supplementary). We found that the 
ranges of different features were varied, and hence the 
imaging data were standardized with zero-mean nor-
malization (Z-score) to avoid the potential effect on the 
classification performance. Firstly, univariate regression 
analysis was used to evaluate the predictive performance 
of each radiomics feature, and only the features with p < 
0.2 were selected for intensive study. Secondly, we used 
the LASSO model with 10-fold cross-validation to fur-
ther select the features with non-zero coefficients and 
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construct a radiomics signature to predict the previous 
immunomarker classifier.

Statistical analysis
Continuous variables were compared using the Student’s 
t-test (normally distributed) or Wilcoxon rank-sum test 
(nonnormally distributed). The Chi-square test was 
utilized to compare the differences in categorical vari-
ables. All clinical variables were evaluated with univari-
ate logistic regression analyses, and multivariate logistic 
regression was performed to determine the significant 
independent factors of treatment benefit. The discrimi-
nation of the immunomarker classifier and radiomics 
signature was quantified with the receiver operator char-
acteristic (ROC) curve. Statistical analysis was conducted 
using R software (version 4.0.5), jamovi software (version 
1.6.23), and SPSS software (version 23.0). A two-sided 
p-value < 0.05 was regarded as statistically significant.

Results
Clinical characteristics
The detailed clinical characteristics of the cohort were 
summarized in Table  1. All enrolled patients were well 
tolerated, and no patient presented with a diagnosis of 
malnutrition or urinary tract infection throughout the 
duration of the trial. Of the 30 patients included in the 
study, 17 (56.7%) were evaluated as CR after CCRT, and 
the rest of 13 (43.3%) were assessed as PR. We used the 
receiver operating characteristic (ROC) curves and the 
Youden Index to select the optimal cutoff points for all 
8 hematological features (Supplementary Fig. S1, S2) and 
classified them into low and high groups. Between the 
CR and PR groups, there were statistically significant dif-
ferences in FIGO stage, tumor size, pre-NLR, pre-PLR, 
pre-LMR, 10F-PNR, 10F-PLR, and 10F-LMR (p < 0.05). 
However, age, LN metastasis, pre-PNR and 10F-NLR 
showed no significant differences (Table 1).

Development and validation of immunomarker classifier
The univariate regression analysis of immune features 
was listed in Supplementary Table S1, which indi-
cated that the infiltrating CD8+T cells were the most 
significant variable in predicting response to CCRT in 
CC patients. The changes in the number of infiltrating 
CD8+T cells and CD68+ cells were selected to build 
the final immunomarker-based classifier by using the 
LASSO logistic regression model with ten-fold cross-
validation (Fig.  1A, 1B). The classifier showed a satis-
fying discriminatory efficacy for treatment response 
with AUCs of 0.842 (95% CI, 0.680-1.000) (Fig. 1C). The 
model score for each patient was calculated accord-
ing to the following formula: immune score = 0.4569 
+ 0.0041 × (CD8+T cell at 10F minus that at baseline) 

Table 1 Characteristics of patients according to the treatment 
response

Tumor size and LNs metastasis were evaluated by a radiologist according to 
patient’s MRI before treatment

Abbreviations: LNs metastasis Lymph nodes metastasis, Pre-NLR Neutrophil 
lymphocyte ratio before treatment, Pre-PNR Platelet neutrophil ratio before 
treatment, Pre-PLR Platelet lymphocyte ratio before treatment, Pre-LMR 
Lymphocyte monocyte ratio before treatment, 10F-NLR Neutrophil lymphocyte 
ratio after 10F RT, 10F-PNR Platelet neutrophil ratio after 10F RT, 10F-PLR Platelet 
lymphocyte ratio after 10F RT, 10F-LMR Lymphocyte monocyte ratio after 10F RT

Significance: * p value < 0.05

Variables Response p

PR (n = 13) CR (n =17)

Age (years) 0.177

 <60 10 (76.9%) 9 (52.9%)

 ≥60 3 (23.1%) 8 (47.1%)

FIGO stage 0.030 *

 I~II 4 (30.8%) 12 (70.6%)

III~IV 9 (69.2%) 5 (29.4%)

Tumor size (cm) 0.020 *

 <4 1 (7.7%) 8 (47.1%)

 ≥4 12 (92.3%) 9 (52.9%)

LNs metastasis 0.153

 Negative 5 (38.5%) 11 (64.7%)

 Positive 8 (61.5%) 6 (35.3%)

Pre-NLR 0.009 *

 Low 1 (7.7%) 9 (52.9%)

 High 12 (92.3%) 8 (47.1%)

Pre-PNR 0.225

 Low 9 (69.2%) 8 (47.1%)

 High 4 (30.8%) 9 (52.9%)

Pre-PLR 0.004 *

 Low 4 (30.8%) 14 (82.4%)

 High 9 (69.2%) 3 (17.6%)

Pre-LMR 0.003 *

 Low 7 (53.8%) 1 (5.9%)

 High 6 (46.2%) 16 (94.1%)

10F-NLR 0.127

 Low 4 (30.8%) 10 (58.8%)

 High 9 (69.2%) 7 (41.2%)

10F-PNR 0.012 *

 Low 4 (30.8%) 13 (76.5%)

 High 9 (69.2%) 4 (23.5%)

10F-PLR 0.013 *

 Low 6 (46.2%) 15 (88.2%)

 High 7 (53.8%) 2 (11.8%)

10F-LMR 0.004 *

 Low 10 (76.9%) 4 (23.5%)

 High 3 (23.1%) 13 (76.5%)

Immune score, 
median (interquar-
tile range)

0.042 (-0.264 
to 0.278)

0.548 (0.416 
to 0.749)

0.002 *
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- 0.0009 × (CD68+ cell at 10F minus that at base-
line), and the immune scores (median [interquartile 
range]) in patients with CR after CCRT were signifi-
cantly higher than those with PR (0.548 [0.416 to 0.749] 
vs. 0.042 [-0.264 to 0.278], respectively, p = 0.0017) 
(Table 1 and Fig. 1D). As displayed in Fig. 1C, the opti-
mal cut-off for classifier scores determined by Youden’s 
index was 0.307, and the model had a sensitivity of 
0.882 while obtaining a specificity of 0.769, respec-
tively. Accordingly, patients could be divided into two 
groups: low-score group (score < 0.307) and high-score 
group (score ≥ 0.307). The low-score group consisted 
of 12 patients, in which 2/12 (17%) were evaluated as 
CR and 10/12 (83%) as PR. For the high-score group, 
15/18 (83%) patients were considered as CR, and the 
remaining 3/18 (17%) as PR. High-score patients had a 
significantly higher CR rate than low-score patients (p 
< 0.001) (Fig. 1E).

We performed univariate binary logistic regression 
analysis to evaluate the ability of clinical features to dis-
tinguish therapy response. As shown in Table 2, the AUC 
values of this immunomarker-based model were higher 
than any single clinical variable, which suggested that this 
classifier achieved the best predictive efficacy. Multivari-
ate logistic regression was performed adjusting for clini-
cal variables and it suggested that the immunomarker 

classifier score was an independent predictor of treat-
ment response (Table 2).

Construction and performance of radiomics signature
Of all 97 radiomics features extracted from VOI, there 
were 36 features meeting the criterion that p < 0.2 in uni-
variate analysis. LASSO regression algorithm with ten-
fold cross-validation, a common regression model for 
high-dimensional data, was utilized to further determine 
the most significant 4 imaging features and develop a 
radiomics signature to discriminate immunomarker clas-
sifier. An AUC of 0.875 (95% CI, 0.753-0.997) revealed 
that the radiomics signature had a great ability to dis-
tinguish the high-score group from the low-score group 
(Fig.  2A). Fig.  2B showed that the radiomics signature 
also exhibited good discrimination for therapy response 
with AUCs of 0.864 (95% CI, 0.734-0.994). The radiomics 
signature and 10F-LMR were identified as independent 
factors of treatment response in CC patients by multivar-
iate regression analysis (Supplementary Table S2).

The calculated formula of the radiomics score was 
shown in the supplementary. There were significant dif-
ferences between the radiomics score (median [inter-
quartile range]) in immunomarker groups (-0.175 
[-1.450 to 0.371] vs. 1.320 [0.519 to 1.490], respectively, 
p = 0.0003) and response groups (-0.452 [-1.450 to 

Fig. 1 Feature selection and construction of the immunomarker classifier using LASSO logistic regression, and the predictive performance 
of the classifier. A Tuning parameter (λ) selection in the LASSO model via ten-fold cross-validation based on minimum criteria. The binomial 
deviance was plotted versus log (λ). The dotted vertical line was set with minimum criteria, and the optimal λ value of 0.094 with log (λ) of -2.368 
was selected. B LASSO coefficient profiles of the 13 immune markers. A vertical line was drawn at the value selected by 10-fold cross-validation, 
where optimal λ resulted in 2 features with nonzero coefficients. C ROC curve and Youden’s index of the Immunomarker Classifier. D The immune 
score boxplots between complete and partial remission groups. E Comparison of the immediate responses between the low-score group 
and the high-score group. Significance: * p value < 0.05. **p < 0.01
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0.595] vs. 1.320 [0.512 to 1.530], respectively, p = 0.0004) 
(Figs. 2C and 2D). The optimal cut-off value of radiom-
ics score determined by ROC curve analysis was 1.036, 
and patients were classified into low-Radscore group 
(Radscore < 1.036) and high-Radscore group (Radscore ≥ 
1.036). The low-Radscore group included 19 patients, in 
which fewer patients received CR but there is no signifi-
cant difference (37% vs. 63%, p > 0.05). As for the high-
Radscore group, most patients were evaluated as CR (91% 
vs. 9%, p < 0.01). It indicated that treatment response was 
significantly different for patients stratified by radiomics 
signature (p = 0.004) (Fig. 2E).

Discussion
Tumor progression and response to therapy are asso-
ciated with TME. It has been reported that chemora-
diotherapy could exert anti-tumor efficiency by altering 
the TME [40–42]. Similarly, our previous study showed 
that the variations of innate immune markers during the 
treatment course displayed a closer relation to the effi-
cacy of CCRT for CC, demonstrating that the alterna-
tions in the TME resulting from chemoradiotherapy may 
be an important factor for affecting patient prognosis 
and therapeutic response. In this study, we proposed an 
immunomarker classifier to appraise the alterations in 
TME-related biomarkers during therapy in CC patients, 
and a corresponding radiomics signature was created.

Based on the clinical research data from our previous 
trial (NCT03744819), we analyzed the changes of the 
expression of 13 immune markers before and after 10 

sessions of radiotherapy, selected the most useful pre-
dictive features via the LASSO algorithm with ten-fold 
cross-validation, and developed a new immunomarker 
classifier. Patients with lower immune scores had a lower 
CR rate, indicating the immune score may be a poor 
prognostic factor. We also confirmed that the robust 
value of the immunomarker classifier was an independ-
ent predictor of treatment response. Furthermore, com-
pared with the FIGO staging system, which was widely 
used to guide treatment strategy for CC, this immu-
nomarker classifier could provide additional information 
about the infiltration of immune cells and show good 
predictive ability.

In this study, the immunomarker classifier was deter-
mined by the number of changes in CD8+ T cells 
and CD68+ cells in the TME during CCRT. CD8+ T 
cells are cytotoxic T lymphocytes that secrete various 
cytokines to exert their antitumor effect [43]. CD68 
is a specific surface marker of macrophages. CD8+ T 
cells and tumor-associated macrophages (TAMs) are 
the predominant immune population in the TME. 
Although macrophages have several function pheno-
types, the majority of macrophages tend to acquire the 
M2 phenotype and facilitate tumor growth and metas-
tasis [44, 45]. A study demonstrated that the infiltrat-
ing lymphocyte percentage in breast cancer was an 
independent predictor of the efficacy of neoadjuvant 
chemotherapy [46]. Another study on lung cancer 
found that tumor-infiltrating lymphocytes were associ-
ated with the efficacy of immune checkpoint inhibitors 

Table 2 Risk factors for treatment response in cervical cancer

Abbreviations: NA Not available, LNs metastasis Lymph nodes metastasis, Pre-NLR Neutrophil lymphocyte ratio before treatment, Pre-PNR Platelet neutrophil ratio 
before treatment, Pre-PLR Platelet lymphocyte ratio before treatment, Pre-LMR Lymphocyte monocyte ratio before treatment, 10F-NLR Neutrophil lymphocyte ratio 
after 10F RT, 10F-PNR Platelet neutrophil ratio after 10F RT, 10F-PLR platelet lymphocyte ratio after 10F RT, 10F-LMR Lymphocyte monocyte ratio after 10F RT

Significance: * p value < 0.05

Variable Univariate Logistic Regression Multivariate Logistic Regression

OR (95% CI) p AUC OR (95% CI) p

Immune score (per 0.1 increase) 12.267 (1.493-100.770) 0.020 * 0.842 32.448 (1.430-735.592) 0.029 *

Age (years) (<60 vs. ≥60) 2.963 (0.596-14.730) 0.184 0.620 NA NA

FIGO stage (I~II vs. III~IV) 0.185 (0.038-0.893) 0.036 * 0.699 NA NA

Tumor size (cm) (<4 vs. ≥4) 0.094 (0.010-0.891) 0.039 * 0.697 NA NA

LNs metastasis (Negative vs. Positive) 0.341 (0.076-1.522) 0.159 0.631 NA NA

Pre-NLR (Low vs. High) 0.074 (0.008-0.704) 0.023 * 0.726 NA NA

Pre-PNR (Low vs. High) 2.531 (0.557-11.512) 0.229 0.611 NA NA

Pre-PLR (Low vs. High) 0.095 (0.017-0.529) 0.007 * 0.758 NA NA

Pre-LMR (Low vs. High) 18.667 (1.879-185.406) 0.012 * 0.740 36.366 (1.050-1255.634) 0.047 *

10F-NLR (Low vs. High) 0.311 (0.068-1.430) 0.133 0.640 NA NA

10F-PNR (Low vs. High) 0.137 (0.027-0.695) 0.016 * 0.729 NA NA

10F-PLR (Low vs. High) 0.114 (0.018-0.716) 0.020 * 0.710 NA NA

10F-LMR (Low vs. High) 10.833 (1.961-59.836) 0.006 * 0.767 20.348 (1.100-377.655) 0.043 *
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[47]. Besides, among patients with advanced colorectal 
cancer who had received bevacizumab plus irinotecan/
oxaliplatin-based combination chemotherapy, those 
with lower TAM infiltration showed two times longer 
overall survival compared to those with higher TAM 
infiltration [48]. These findings suggest that infiltrat-
ing lymphocytes play a fundamental role in anti-tumor 
immune response and prognosis, while TAMs favor 
tumor progression.

The same trend was found in this study. Patients with 
higher scores had increased CD8+ T cells and decreased 
CD68+ cells after CCRT in the TME which we had 
termed immune-inflamed TME (i.e., “hot” tumor). And 
vice versa, patients with lower scores had an immu-
nosuppressive TME (i.e., “cold” tumor). In short, CC 
patients could be divided into two different groups based 
on the immunomarker classifier score for predicting the 
immune infiltration to guide individualized treatment.

Fig. 2 Construction and predictive performance of the radiomics signature using LASSO logistic regression. A ROC curves of the Radiomics 
Signature to predict Immunomarker Classifier. B ROC curves of the Radiomics Signature to predict treatment response. C The radiographic scores 
boxplots between the high-score immune group and the low-score group. D The radiographic scores boxplots between complete and partial 
remission groups. E Comparison of the immediate responses between the low-Radscore group and the high-Radscore group. Significance: ns = 
not significant, **p < 0.01
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In the present work, we performed a tumor biopsy 
before and after 10F radiotherapy to evaluate the changes 
in the expression of the biomarkers related to the TME. 
This approach has the advantage of discovering the 
immuno-phenotype changes and the molecular changes 
during chemoradiotherapy. Hence, our immunomarker 
classifier calculated immune scores by analyzing changes 
in the number of CD8+ T cells and macrophages 
between pre- and post-treatment comprehensively.

The detection of immune-related biomarkers in TME 
requires biopsies which is not feasible in most disease 
types and is a lack of compliance in patients with acces-
sible tumors. Radiomics is currently in development and 
can explore diagnostic and prognostic information by 
extracting tumor features quantitatively from medical 
images in the field of tumor research which may solve 
this problem [49]. Currently, several studies have inves-
tigated the relationship between radiomics signatures 
and TME. The above-mentioned study by Sun et al [32], 
and Jiang et al [50] found that radiomics signatures could 
reflect the immune state and the characteristics of the 
TME. In this study, we tried to establish the radiomics 
signature in CC via CT to predict the immunomarker 
classifier. At the same time, we found that the radiomics 
signature could identify CC patients who have a better 
treatment response, and the patients with higher radiom-
ics scores had a significantly higher CR rate than those 
with lower radiomics scores.

In recent years, immunotherapy represented by 
immune checkpoint blockade (ICB) has been a signifi-
cant advance in the treatment of various tumors. Nev-
ertheless, only a small part of patients display improved 
responses from the PD-L1 blockade or even RT and 
ICB combined therapy. Consequently, aiding the iden-
tification of patients suitable for immunotherapy by 
assessing the immune status following chemoradiation 
therapy is necessary to avoid overtreatment and unnec-
essary economic burden. The result of the present study 
demonstrated that the high-Radscore group displayed 
increased CD8 + T cells infiltration and decreased mac-
rophages infiltration in the TME after 10F-RT, meaning 
that patients were in an immunocompetent state, while 
the low-Radscore group had the opposite result. We 
envisaged that the dynamic modifications of the tumor-
infiltrating immune cells in patients may be predicted by 
performing contrast-enhanced pelvic CT during chemo-
radiotherapy. It is a potential tool in guiding individual-
ized treatment regimens for cancer patients.

This study had several limitations. Firstly, this was a 
single-center study and the data set was not divided into 
training and testing cohorts due to the limited sample 
size. Ten-fold cross-validation was used to internally ver-
ify to reduce model errors and prevent overfitting. Thus, 

further large clinical research is warranted. Secondly, it 
has been reported that M1 and M2 macrophages co-exist 
in TME [51]. CD68 cannot distinguish between two phe-
notypes but is rather a pan-macrophage marker. Further 
experiments are needed to discriminate the impact of 
two phenotypes, such as flow cytometry and single-cell 
sequencing.

Conclusions
In conclusion, the immunomarker classifier could assess 
CD8+ T cells and macrophages infiltration in TME dur-
ing CCRT in CC. The radiomics signature could predict 
the immune score to evaluate the dynamic changes in 
the infiltration of CD8+ T cells and macrophages dur-
ing CCRT. Additionally, the radiomics signature might 
be a potential predictive tool to guide the stratification of 
treatment strategies and achieve treatment individualiza-
tion for patients.
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