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Abstract 

Background:  Transcatheter arterial chemoembolization (TACE) is the mainstay of therapy for intermediate-stage 
hepatocellular carcinoma (HCC); yet its efficacy varies between patients with the same tumor stage. Accurate predic-
tion of TACE response remains a major concern to avoid overtreatment. Thus, we aimed to develop and validate an 
artificial intelligence system for real-time automatic prediction of TACE response in HCC patients based on digital 
subtraction angiography (DSA) videos via a deep learning approach.

Methods:  This retrospective cohort study included a total of 605 patients with intermediate-stage HCC who received 
TACE as their initial therapy. A fully automated framework (i.e., DSA-Net) contained a U-net model for automatic tumor 
segmentation (Model 1) and a ResNet model for the prediction of treatment response to the first TACE (Model 2). The 
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Background
Hepatocellular carcinoma (HCC) is the sixth most com-
mon malignant cancer and the fourth leading cause of 
cancer-related deaths worldwide [1]. Less than 30% of 
HCC patients receive potentially curative therapies (e.g., 
resection, ablation therapy, and liver transplantation), 
and most patients diagnosed with intermediate- and 
advanced-stage HCC only receive unresectable therapy 
[2]. According to international guidelines, transcath-
eter arterial chemoembolization (TACE) is currently the 
standard treatment to manage patients with interme-
diate- and unresectable early-stage HCC and improve 
patient survival rates [3, 4]. However, intermediate-stage 
HCC is determined based on liver function and tumor 
burden, which results in heterogeneous outcomes, such 
as varied treatment response of 15–55% and median 
overall survival of 13–43 months [1, 2]. In addition, some 
patients may experience deterioration of liver function 
after TACE, which may negatively impact prognosis and 
potentially impede consequent anti-tumor treatments 
if patients’ liver function further exacerbates due to 
repeated TACE cycles [3, 4]. Thus, a pre-procedure pre-
diction model to estimate treatment response to TACE as 
a reference may aid in clinical decision-making and thus, 
enable patients to achieve acceptable therapeutic efficacy.

Digital subtraction angiography (DSA) is an indis-
pensable procedure during TACE therapy that dynami-
cally provides information on lesion location, catheter 
navigation, arterial blood supply, and treatment assess-
ment in real-time, which influence the diagnosis and 
treatment of most HCC patients who receive TACE 
[5]. Given the impact of DSA on TACE diagnosis and 
treatment, technological advances have been made to 
improve image quality, and computer-aided software 
and 3D-angiography have been introduced to improve 

interprocedural guidelines. However, despite these 
advances, the location and evaluation of lesions in DSA 
videos are still reliant on operators’ subjectivity, and 
heterogeneity exists in terms of techniques and treat-
ment assessment, which can lead to different outcomes 
in HCC patients. Thus, there is a crucial need for quan-
titative analysis of DSA videos, especially for the objec-
tive evaluation of treatment response.

Key advances in mining medical images for informa-
tion have been made in recent years. Machine learning, 
especially deep learning (DL), has been used to extract 
more information from images than what can be 
observed by radiologists. DL-based models have been 
widely applied in HCC, such as for tumor segmentation 
[6], differential diagnosis [7], and prognosis [8]. How-
ever, reports of using DL-based models for predicting 
treatment response in HCC patients treated with TACE 
are scarce, and to the best of our knowledge, only two 
studies have been conducted recently [9, 10]. Notably, 
the models in these studies were constructed based on 
pretherapy contrast-enhanced ultrasound (US) or com-
puted tomography (CT) images, whereas the efficacy of 
TACE depends primarily on arterial blood supply and 
tumor burden, which can be directly observed by angi-
ography during TACE [11, 12]. Currently, DL-based 
models using DSA images are only used to detect and 
segment vascular diseases, such as coronary artery ste-
nosis and intracranial aneurysm [13, 14].

Thus, we aimed to propose a DL architecture, called 
DSA-Net, which incorporates clinical variables and 
decoded DSA information to aid clinicians in mak-
ing personalized treatment decisions and identifying 
ideal candidates for TACE. The DSA-Net consists of a 
DL-based model for the tumor segmentation on DSA 

two models were trained in 360 patients, internally validated in 124 patients, and externally validated in 121 patients. 
Dice coefficient and receiver operating characteristic curves were used to evaluate the performance of Models 1 and 
2, respectively.

Results:  Model 1 yielded a Dice coefficient of 0.75 (95% confidence interval [CI]: 0.73–0.78) and 0.73 (95% CI: 0.71–
0.75) for the internal validation and external validation cohorts, respectively. Integrating the DSA videos, segmenta-
tion results, and clinical variables (mainly demographics and liver function parameters), Model 2 predicted treatment 
response to first TACE with an accuracy of 78.2% (95%CI: 74.2–82.3), sensitivity of 77.6% (95%CI: 70.7–84.0), and 
specificity of 78.7% (95%CI: 72.9–84.1) for the internal validation cohort, and accuracy of 75.1% (95% CI: 73.1–81.7), 
sensitivity of 50.5% (95%CI: 40.0–61.5), and specificity of 83.5% (95%CI: 79.2–87.7) for the external validation cohort. 
Kaplan-Meier curves showed a significant difference in progression-free survival between the responders and non-
responders divided by Model 2 (p = 0.002).

Conclusions:  Our multi-task deep learning framework provided a real-time effective approach for decoding DSA 
videos and can offer clinical-decision support for TACE treatment in intermediate-stage HCC patients in real-world 
settings.

Keywords:  Hepatocellular carcinoma, Transcatheter arterial chemoembolization, Deep learning, DSA videos
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videos and a DL-based model for treatment response 
prediction.

Materials and methods
Patients and datasets
This retrospective study was approved by the institu-
tional research ethics committee of participating hos-
pitals, and the need for informed consent was waived. 
Consecutive patients with newly diagnosed HCC treated 
with conventional TACE (cTACE) were retrospectively 
reviewed. Diagnosis of HCC was based on either his-
tology or dynamic imaging (CT/magnetic resonance 
imaging [MRI]) evaluations according to the American 
Association for the Study of Liver Diseases (AASLD) or 
European Association for the Study of the Liver (EASL) 
guidelines [15, 16]. Inclusion criteria were: (1) aged 
18 years or older; (2) unresectable Barcelona Clinic Liver 
Cancer (BCLC) stage A/B; (3) no previous anti-tumor 
treatment. Exclusion criteria were: (1) Child-Pugh C liver 
function or evidence of hepatic decompensation, includ-
ing refractory ascites, esophageal or gastric variceal 
bleeding, or hepatic encephalopathy; (2) Eastern Coop-
erative Oncology Group (ECOG) performance score of 
> 1; (3) no complete DSA videos or follow-up data; (4) 
diagnosis or history of any other concurrent malignan-
cies. Baseline CT/MRI was performed 5–7 days before 
the first TACE session and response assessment imag-
ing was performed approximately 4–6 weeks after TACE 
(before the subsequent therapy session). The flowchart of 
patient inclusion is shown in Fig. 1. The primary cohort 
contained 484 consecutive HCC patients who were 
newly diagnosed between January 14, 2013 and Decem-
ber 24, 2019. The primary dataset was randomly divided 
into training (n = 360) and internal validation cohorts 
(n = 124) at a ratio of 3:1. The external validation cohort 
was composed of 121 HCC patients who were diagnosed 
between January 29, 2016 and June 10, 2020.

Clinical characteristics included age, sex, hepatitis B 
virus (HBV), a-Fetoprotein (AFP), prothrombin time 
(PT), and liver function parameters, which included 
Child–Pugh score, ascites, total bilirubin (TBIL), albumin 
(ALB), aspartate aminotransferase (AST), alanine ami-
notransferase (ALT), and C-reactive protein (CRP). All 
laboratory data were obtained within the 3 days before 
the first TACE session.

TACE procedure
Before the TACE procedure, we performed routine DSA 
of the superior mesenteric and hepatic arteries. Dur-
ing the TACE procedure, the interventional radiolo-
gists super-selectively administrated chemotherapeutic 
drugs (10–50 mg doxorubicin or epirubicin) mixed with 
lipiodol (5–20 ml) through feeding arteries until arterial 

flow stasis was observed. Subsequently, we embolized 
the feeding arteries using a gelatin sponge or polyvinyl 
alcohol foam particles, as observed on angiography. Each 
procedure was performed by interventional radiologists 
with more than 8 years of experience. If patients had a 
favorable clinical status and laboratory findings and there 
was no evidence of extrahepatic spread or major portal 
vein invasion, sequential TACE was performed on an 
“on-demand” basis in cases where residual viable tumors 
were found in follow-up CT/MRI every 4–8 weeks after 
each TACE session.

Study endpoints
The primary endpoint of this study was treatment 
response after the first TACE session (approximately 
4–6 weeks after TACE), which was assessed according 
to the modified Response Evaluation Criteria in Solid 
Tumors (mRECIST) [17]  by two radiologists with more 
than 5 years of experience in liver imaging and checked 
by one interventional radiologist with 8 years of experi-
ence in TACE therapy. When there was any ambiguity in 
tumor response assessment, the final classification was 
made by observers’ consensus. Patients were divided 
into two groups: 1) responders, who were patients who 
initially achieved an objective response to the first TACE 
session (defined as those assessed as having complete 
response [CR] or partial response [PR]), and 2) non-
responders, who were patients who did not achieve an 
objective response during the treatment course (those 
assessed as having stable disease [SD] or progressive dis-
ease [PD]). The secondary endpoint was 3-year progres-
sion-free survival (PFS), which was defined as the time 
from the initial TACE to disease progression or death 
from any cause.

Imaging acquisition and annotation
We obtained pre-TACE angiography of the proper or 
branch hepatic artery from portable network graphics 
(PNG) images or audio-video interleaved (AVI) videos 
formats from the Picture Archiving and Communica-
tion Systems (PACS). Each DSA video contained 20–30 
frames with 1021 × 788 pixel-wise resolution. For fur-
ther segmentation, all DSA AVI videos were first trans-
formed into consecutive PNG images. We also acquired 
pre- and post-therapy CT/MRI digital imaging and com-
munications in medicine images from PACS to assist in 
determining the tumor location, segmenting the tumor 
on DSA videos, and assessing treatment response. DSA 
videos acquisition parameters are described in Supple-
mentary Method S1.

The tumor and whole liver were manually delineated 
on DSA images by two experienced radiologists using the 
Labelme software (http://​label​me.​csail.​mit.​edu), which 

http://labelme.csail.mit.edu/
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was checked by one experienced interventional radiolo-
gist. We selected the frame in the DSA videos with full 
staining of the tumor or arterial flow stasis as the key 
frame. For data augmentation, we selected two further 
consecutive frames (i.e., the key frame and the frames 
before and after the key frame) for training the segmen-
tation model. We also conducted the experiment with 
the original key frame selected from each DSA video for 

training, which was slightly poorer than using our cur-
rent data augmentation. The flowchart of model con-
struction is shown in Fig. 2.

DSA‑net construction
Before model construction, we preprocessed the DSA 
images. Firstly, in the clinic, interventional radiologists 
select DSA video frames with full staining of tumors or 

Fig. 1  Flowchart of patient inclusion/exclusion for two centers
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arterial flow stasis for the diagnosis and measurement 
of tumor parameters. Thus, we defined such frames as 
key frames to simulate the human diagnosis process. 
Specifically, we designed a simple method for auto-
matically selecting key frames (Supplementary Method 
S2). Second, because the black borders around the raw 

DSA images usually negatively impact tumor segmenta-
tion, we used median filtering to remove the noise in 
the black border and thresholding to detect and remove 
the black borders. Third, to unify the gray value range 
of the images, a traditional min-max normalization was 
applied to the DSA images. Lastly, we used torchvision.

Fig. 2  Workflow of DSA-Net. The procedure of DSA-Net contains imaging acquisition, key frame selection, and construction of segmentation 
network and prediction network. The segmentation network consists of a temporal difference learning module, a liver region segmentation 
sub-network, and a final fusion segmentation sub-network. The prediction network included a ResNet18 for image data and a multi-layer 
perceptron for tabular data
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transforms. Resize to unify the resolution of images to 
256 × 256.

We constructed a DSA-Net including a segmenta-
tion network (Model 1) for the automatic tumor seg-
mentation on DSA videos, and a treatment response 
prediction network (Model 2) for evaluating treatment 
response to the first TACE session.

Segmentation network (model 1)
Initially, we trained our baseline model on the key frames 
using U-Net [18], U-Net++ [19], nnU-Net [20], Atten-
tion U-Net [21], and U2-Net [22]. Given the convenience 
of the implementation and modification of the model, we 
chose the U-Net as the backbone of our final model.

Considering the specificity of DSA videos, we pro-
posed the novel Model 1 for HCC segmentation, which 
included a temporal difference learning (TDL) module, 
a liver region segmentation (LRS) sub-network, and a 
final fusion segmentation (FFS) sub-network (Supple-
mentary Method S2). The three inputs of FFS were the 
key frames, the liver region masks predicted by LRS, and 
the temporal difference learned by TDL. The key frames 
(256 × 256 × 1), alongside the learned temporal differ-
ence (256 × 256 × 1) by TDL and the predicted liver 
region masks (256 × 256 × 1) by LRS, were concatenated 
and fed into this network. Finally, we co-trained the TDL 
and LRS networks simultaneously with the segmentation 
of U-Net. The segmentation model was developed on the 
training cohort using five-fold cross-validation, which 
was optimized on the validation cohort and evaluated 
on the testing cohort. The loss functions were defined as 
follows:

where LLTD, LLRS, and Lseg denote the losses of learned 
time difference (LTD), LRS, and tumor segmentation, 
respectively, and LTotal is the total loss of the whole net-
work. Note that, a, λ0, λ1 are hyperparameters that were 
used to control the effect of the loss function and were 
experimentally set to 0.5, 0.1, and 1, respectively. FD is 
the frame differences, LM is the liver region masks, and 
GT is the ground truth.

We analyzed the potential factors that would affect 
the automatic segmentation, including lesion size, lesion 
number, and the surrounding inference images. Because 

(1)LLTD = |ILTD − IFD|L1

(2)
LLRS = a ∗ |ILRS − ILM |BCE + (1− a) ∗ |ILRS − ILM |DICE

(3)
Lseg = a ∗

∣

∣Iseg − IGT
∣

∣

BCE
+ (1− a) ∗

∣

∣Iseg − IGT
∣

∣

DICE

(4)LTotal=�0 ∗ LLTD+�1 ∗ LLRS + Lseg

some operators habituate to enlarge DSA images, we also 
compared the performance between different fields of 
view (FOVs).

Treatment response prediction network (model 2)
The tumor areas acquired from Model 1 and clinical 
variables were applied to construct Model 2 for predict-
ing treatment response to the first TACE session. For 
the classification task, we constructed a model contain-
ing two branches: one convolutional neural network 
(CNN) subnet based on ResNet18 for our image data and 
a multi-layer perceptron for our tabular data [23]. The 
preprocessed procedures of tabular data are described 
in Supplementary Method S2. The outputs of the two 
branches, which referred to the features extracted from 
the image and tabular data, respectively, were combined 
and fed into the final linear layers to obtain the final 
binary class to predict treatment response (Supplemen-
tary Method S2). Consequently, a series of comparative 
experiments were conducted by changing the input and 
using the original key frames and ground truth to train 
the predictive model as the upper bound of the whole 
model.

Statistical analysis
The clinical characteristics between cohorts were com-
pared using independent t-tests (or Mann–Whitney U 
test as appropriate) for continuous variables and χ2 tests 
(or Fisher exact test, as appropriate) for categorical vari-
ables. The interobserver agreement of treatment response 
evaluation was measured by the intraclass correlation 
coefficient (ICC); an ICC > 0.75 was regarded as good [24]. 
We used the Dice coefficient, accuracy, patient-level sensi-
tivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), lesion-level sensitivity, and false-
positive ratio (FPR) to assess the performance of Model 1. 
The 95% confidence intervals (CIs) were obtained using 
bootstrapping to assess variability. The performance of 
Model 2 was evaluated by an area under the receiver oper-
ating characteristic curve, along with accuracy, sensitivity, 
specificity, PPV, and NPV. The performance of models 
was compared using the Delong’s test. The PFS between 
the responders and non-responders was compared using 
the Kaplan-Meier curve and the log-rank test. All statis-
tical tests were two-sided, and p < 0.05 indicated statisti-
cal significance. Statistical analyses were performed using 
SPSS software (version 22.0, SPSS Statistics, Armonk, NY, 
USA) and Python (version 3.8.3).

Results
Baseline clinical characteristics
A total of 605 eligible patients with 610 DSA videos 
(three patients with two DSA videos and one patient 
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with three DSA videos) and 905 lesions from two hospi-
tals were included for analysis. Baseline clinical charac-
teristics of the training, internal validation, and external 
validation cohorts are presented in Table  1. There were 
no significant differences in any of features between the 
training cohort and internal validation cohort. The ICC 
of treatment response evaluation between two observers 
ranged from 0.930 to 0.944.

Performance of segmentation network (model 1)
Among the baseline segmentation models, the nnU-
net had a slightly higher Dice coefficient of 0.72 (95% 
CI: 0.70–0.74) (Supplementary Table S1). U-net was 
selected as the baseline model for further modification, 
which had a Dice coefficient of 0.71 (95% CI: 0.68–0.74). 
Then, according to the learned temporal difference of 
the frames, the performance of the segmentation model 
based on the baseline model plus TDL was effectively 
boosted. The Dice coefficient increased from 0.71 to 

0.72. The performance of TDL with different frames was 
slightly lower than that the 10 frames, and thus the 10 
frames of TDL were used in subsequent analyses (Sup-
plementary Table S2). Similarly, the LRS was added into 
the baseline model and had higher performance com-
pared with that of the baseline model and TDL. The Dice 
coefficient increased from 0.71 to 0.73.

Finally, a final fusion segmentation Model 1 was built 
by integrating the baseline model with TDL and LRS. In 
the internal validation cohort, Model 1 achieved a Dice 
coefficient, accuracy, patient-level sensitivity, specificity, 
PPV, NPV, lesion-level sensitivity, and FPR of 0.75 (95% 
CI: 0.73–0.78), 97.1% (95% CI: 96.8–97.5), 82.3% (95% CI: 
79.8–84.8), 98.4% (95% CI: 98.1–98.6), 77.9% (95% CI: 
75.0–80.6), 98.3% (95% CI: 97.9–98.6), 87.2% (95% CI: 
84.4–89.9), and 23.8% (95% CI: 20.4–27.3), respectively. 
Furthermore, an independent external validation cohort 
was used to test the generalizability and robustness of 
Model 1, which contained 121 patients with 122 DSA 

Table 1  Baseline characteristics of the training and validation cohorts

Qualitative variables are in n (%) and quantitative variables are in mean ± SD, when appropriate. HBV Hepatitis B virus, BCLC Barcelona Clinic Liver Cancer, AFP 
a-Fetoprotein, PT Prothrombin time, TBIL Total bilirubin, ALB Albumin, AST Aspartate aminotransferase, ALT Alanine aminotransferase, CRP C-reactive protein

Variables All patients (n = 605) Training cohort 
(n = 360)

Internal validation cohort 
(n = 124)

External 
validation cohort 
(n = 121)

Age (years) 55.0 ± 11.9 55.06 ± 12.2 55.5 ± 11.6 54.5 ± 11.3

Sex (male) 548 (90.6) 330 (91.7) 107 (86.3) 111 (91.7)

HBV + 530 (87.6) 306 (85.0) 107 (86.3) 112 (92.6)

BCLC stage

  A 67 (11.1) 36 (10.0) 16 (12.9) 15 (12.4)

  B 538 (88.9) 324 (90.0) 108 (87.1) 106 (87.6)

Child-Pugh score

  5 437 (72.2) 263 (73.1) 100 (80.6) 74 (61.2)

  6 106 (17.5) 62 (17.2) 15 (12.1) 29 (24.0)

  7 38 (6.3) 21 (5.8) 8 (6.5) 9 (7.4)

  8 17 (2.8) 10 (2.8) 2 (1.6) 7 (5.8)

  9 7 (1.2) 4 (1.1) 1 (0.8) 2 (1.7)

Ascites 43 (7.1) 24 (6.7) 7 (5.6) 12 (9.9)

PT (s) 12.8 ± 5.9 13.1 ± 7.6 12.3 ± 1.3 12.5 ± 1.6

TBIL (μmol/L) 18.6 ± 16.6 19.1 ± 18.6 16.7 ± 8.7 17.5 ± 13.4

ALB (g/L) 40.7 ± 23.9 41.8 ± 30.7 40.2 ± 4.7 38.0 ± 5.3

AST (≥40, IU/L) 351 (58.0) 230 (63.9) 69 (55.6) 52 (43.0)

ALT (≥40, IU/L) 311 (51.4) 198 (55.0) 69 (55.6) 44 (36.4)

CRP (≥1, mg/L) 313 (86.9) 313 (86.9) 108 (87.1) 96 (79.3)

AFP (≥200, ng/ml) 267 (44.1) 172 (47.8) 51 (41.1) 44 (36.4)

Treatment response

  Responders 335 (55.4) 176 (48.9) 69 (55.6) 90 (74.4)

  Non-responders 270 (44.6) 184 (51.1) 55 (44.4) 31 (25.6)

Combined with other treatment 
(yes)

388 (64.1) 237 (65.8) 81 (65.3) 70 (57.9)

Rounds of TACE (≥2) 523 (86.4) 320 (88.9) 104 (83.9) 99 (81.8)
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videos. The model achieved a Dice coefficient, accuracy, 
patient-level sensitivity, specificity, PPV, NPV, lesion-
level sensitivity, and FPR of 0.73 (95% CI: 0.71–0.75), 
97.1% (95% CI: 96.7–97.4), 79.0% (95% CI: 76.4–81.1), 
98.7% (95% CI: 98.5–98.9), 79.6% (95% CI: 76.9–82.0), 
98.1% (95% CI: 97.8–98.4), 94.3% (95% CI: 92.4–96.2), 
and 30.8% (95% CI: 27.9–33.7), respectively. The model 
dealt with videos in 10 ms. The performance of the seg-
mentation models is shown in Table 2 and Fig. 3.

In total, 31 lesions in 21 patients were missed in the 
internal validation cohort, whereas 13 lesions in 13 
patients were missed in the external validation cohort. 
All missed HCC lesions were small (diameter < 5 cm) 
and 72.7% of lesions were < 3 cm, which resulted in Dice 
coefficients for lesions with a diameter ≥ 5 cm and < 5 cm 
of 0.87 and 0.64, respectively, in the internal validation 
cohort, and 0.84 and 0.65, respectively, in the exter-
nal validation cohort. Moreover, 27 patients with mul-
tiple lesions resulted in a Dice coefficient of 0.68 in the 
internal validation cohort, and 30 patients with multiple 
lesions resulted in a Dice coefficient of 0.67 in the exter-
nal validation cohort, of whom 64.9% had missed lesions. 
Among the lesions that had a Dice Coefficient < 0.5, 28.1% 
had obvious surrounding dynamic stomach and intestine 
images, 24.3% had obvious motion artifacts of the dia-
phragm and heart, and 23.2% were small (< 2 cm). Nine 
patients with an amplified FOV of DSA images achieved 
a Dice coefficient of 0.79 in the internal validation cohort, 
and 31 patients with an amplified FOV of DSA images 
achieved a Dice coefficient of 0.62 in the external valida-
tion cohort.

Performance of treatment response prediction network 
(model 2)
We further analyzed the segmented lesions and built 
Model 2 to predict the treatment response to the first 
TACE session. Model 2 integrated the DSA videos, seg-
mentation results, and clinical variables, achieving an 
AUC, accuracy, sensitivity, specificity, PPV, and NPV of 
78.2% (95% CI: 73.8–82.6), 78.2% (95% CI: 74.2–82.3), 
77.6% (95% CI: 70.7–84.0), 78.7% (95% CI: 72.9–84.1), 
74.4% (95% CI: 67.2–81.4), and 81.5% (95% CI: 75.9–
86.8), respectively, in the internal validation cohort. The 
generalizability of Model 2 was tested in an independent 
external validation cohort and reached an AUC, accu-
racy, sensitivity, specificity, PPV, and NPV of 67.0% (95% 
CI: 61.2–72.6), 75.1% (95% CI: 70.2–79.5), 50.5% (95% CI: 
40.0–61.5), 83.5% (95% CI: 79.2–87.7), 51.1% (95% CI: 
40.6–61.4), and 83.2% (95% CI: 78.9–87.5), respectively. 
Furthermore, a comparison between the different inputs 
of the predictive model showed that Model 2 had a sig-
nificantly higher performance than that of original key 
frames and clinical variables alone (p < 0.001). The perfor-
mance of the predictive models is presented in Table 3.

As a comparison, the ground truth rather than the 
segmentation results was input into the model to inte-
grate with the DSA videos and clinical variables, and 
this yielded an AUC, accuracy, sensitivity, specific-
ity, PPV, and NPV of 80.2% (95% CI: 75.9–84.7), 80.4% 
(95% CI: 76.3–84.4), 78.8% (95% CI: 72.2–84.9), 81.6% 
(95% CI: 76.5–86.6), 77.4% (95% CI: 70.6–83.7), and 
82.8% (95% CI: 77.4–88.0), respectively, in the inter-
nal validation cohort. When tested in the external 

Table 2  Performance of segmentation models in the validation cohorts

The data in parentheses are 95% confidence interval

TDL Temporal difference learning, LRS Liver region segmentation, FFS Final fusion segmentation, PPV Positive predictive value, NPV Negative predictive value, FPR 
False-positives ratio

Cohort Model Dice Accuracy Patient-level 
sensitivity

Specificity PPV NPV Lesion-level 
sensitivity

FPR

Internal 
validation 
cohort

Baseline 0.71 
(0.68–0.74)

96.8 
(96.4–97.2)

80.2 
(77.6–82.7)

98.2 
(97.8–98.5)

75.5 
(72.3–78.5)

98.1 
(97.8–98.4)

84.8 
(81.9–87.8)

34.0 
(30.5–37.4)

Baseline + 
TDL

0.72 
(0.70–0.75)

96.7 
(96.3–97.0)

83.3 
(81.0–85.6)

97.7 
(97.3–98.0)

73.4 
(70.2–76.3)

98.4 
(98.2–98.7)

81.8 
(78.6–85.0)

32.2 
(28.8–35.5)

Baseline + 
LRS

0.73 
(0.70–0.76)

97.0 
(96.6–97.4)

80.0 
(77.3–82.8)

98.5 
(98.2–98.7)

75.5 
(72.3–78.4)

98.0 
(97.7–98.4)

83.2 
(80.1–86.3)

22.7 
(19.3–26.1)

FFS 0.75 
(0.73–0.78)

97.1 
(96.8–97.5)

82.3 
(79.8–84.8)

98.4 
(98.1–98.6)

77.9 
(75.0–80.6)

98.3 
(97.9–98.6)

87.2 
(84.4–89.9)

23.8 
(20.4–27.3)

External 
validation 
cohort

Baseline 0.71 
(0.68–0.73)

96.8 
(96.5–97.2)

73.1 
(70.5–75.5)

99.3 
(99.2–99.4)

83.3 
(81.3–85.5)

97.2 
(96.8–97.6)

90.1 
(87.7–92.5)

34.7 
(31.7–37.7)

Baseline + 
TDL

0.72 
(0.70–0.75)

96.6 
(96.3–97.0)

86.6 
(84.8–88.4)

97.9 
(97.6–98.1)

71.0 
(68.5–73.7)

98.5 
(98.1–98.8)

92.0 
(89.8–94.2)

44.0 
(40.9–47.0)

Baseline + 
LRS

0.71 
(0.69–0.74)

96.9 
(96.6–97.2)

78.2 
(75.6–80.4)

98.7 
(98.5–98.9)

77.0 
(74.2–79.6)

97.9 
(97.6–98.2)

92.5 
(90.4–94.7)

34.1 
(31.0–37.3)

FFS 0.73 
(0.71–0.75)

97.1 
(96.7–97.4)

79.0 
(76.4–81.1)

98.7 
(98.5–98.9)

79.6 
(76.9–82.0)

98.1 
(97.8–98.4)

94.3 
(92.4–96.2)

30.8 
(27.9–33.7)
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Fig. 3  A comparison of image segmentation algorithms in the validation cohorts. Ground truth and predicted mask of tumors are labeled in yellow 
and cyan-blue, respectively. Compared with other algorithms, the FFS model achieved the lowest false positive and missed segmentation in the 
following four situations: multiple lesions (patient 1), a small lesion < 3 cm (patient 2), a small lesion < 3 cm with obvious surrounding stomach and 
intestine images (patient 3), and poor image quality (patient 4). TDL, temporal difference learning; LRS, liver region segmentation; FFS, final fusion 
segmentation
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validation cohort, the model achieved an AUC, accu-
racy, sensitivity, specificity, PPV, and NPV of 81.6% 
(95% CI: 77.7–85.6), 77.9% (95% CI: 73.8–82.0), 89.2% 
(95% CI: 82.2–95.2), 74.0% (95% CI: 68.1–79.2), 53.9% 
(95% CI: 46.2–61.8), and 95.3% (95% CI: 92.4–97.7), 
respectively. The performance of the input segmenta-
tion results with DSA videos was slightly lower than the 
input ground truth with DSA videos (p > 0.05). Kaplan-
Meier analysis (Fig.  4) showed that the 3-year PFS of 
non-responders was significantly lower than that of the 
responders (p < 0.05).

Discussion
In this study, we established and validated a clinically-
assisted DSA-Net, which included two sub-networks: 
an automatic segmentation network (Model 1) and 
a treatment response prediction network (Model 2). 
Model 1 automatically located HCC lesions on DSA 
videos. Model 2 integrated the DSA videos, segmenta-
tion results, and clinical variables to predict treatment 
response to the first TACE session and yielded high pre-
dictive performance.

In the clinic, DSA prior to TACE directly locates 
lesions, guides catheters, and evaluates treatment, which 
further assists clinicians to make future treatment deci-
sions. However, these processes are operator-dependent, 
which results in interobserver bias between senior and 
junior clinicians. With the significant advances in medi-
cal artificial intelligence, computer analysis of DSA vid-
eos allows clinicians to eliminate the potential obstacle of 
interobserver bias and enables clinicians to deliver pre-
cise individualized therapy. To this end, we first detected 
and segmented HCCs in DSA videos by using classi-
cal baseline networks. However, the performance of the 

baseline models was unsatisfactory. Thus, we explored 
potential reasons for the complexity of the automatic 
segmentation tasks. First, the image quality of DSA vid-
eos varied, which was related to scanner properties and 
acquisition parameters. Second, BCLC stage B included 
multinodular tumors. Under these circumstances, some 
small lesions were easily missed by traditional CNN net-
works. Third, although most HCC lesions were hypervas-
cular with obvious staining in DSA videos, some lesions 
were hypovascular with light and blurred staining that 
were difficult to detect. Finally, the movement interfer-
ence surrounding the image of the liver, which mainly 
included the image of the stomach and intestine, and 
motion artifacts of the diaphragm and heart may have 
caused false segmentation. For these reasons, the detec-
tion and classification of DSA videos using traditional 
DL methods have challenges. To date, to the best of our 
knowledge, there have not been any reports of using the 
DL approach for decoding DSA videos of tumors.

Here, we referred to the method used by clinicians to 
detect HCCs in DSA videos, which considers HCC a 
dynamic staining process in DSA videos, and all tumors 
are in or linked to liver regions. We designed two spe-
cific steps to improve the accuracy of the segmentation 
model. The first step was TDL based on 10 frames, and 
the second was to learn liver region segmentation to nar-
row the area of detection. Integration of these two steps 
significantly enhanced the accuracy of the segmenta-
tion model and achieved real-time segmentation with a 
video processing time of 10 ms. Additionally, the gener-
alization of automatic segmentation was validated in an 
independent cohort and offered an opportunity to rap-
idly locate HCCs and avoid missing multinodular tumors 
during TACE therapy. Moreover, the subgroup analysis of 

Fig. 4  Kaplan-Meier curves of 3-year PFS between the responders and non-responders in the validation cohort. The two response groups were 
divided by the models constructed by (a) clinical data only; (b) key frame of DSA videos and segmentation results; and (c) key frame of DSA videos, 
segmentation results, and clinical data. PFS, progression-free survival; DSA, digital subtraction angiography
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Model 1 showed that the segmentation model was highly 
reliable for larger lesions (≥ 5 cm) or images with fewer 
than two lesions, whereas motion artifacts, surrounding 
interference images, and multiple small lesions (< 3 cm) 
were key factors that contributed to false segmentation. 
Furthermore, because of the different procedures used by 
operators, different FOVs of DSA videos increased seg-
mentation difficulties. Thus, the standard operation of 
the technical procedures contributes to the real-world 
application of Model 1.

When lesions are segmented, the heterogeneity of 
the tumor areas is further decoded to identify under-
lying information to assist in individualized clinical 
management. The success of TACE relies on determin-
ing whether a patient will benefit from TACE. Model 2 
could classify patients into responder or non-responder 
groups before chemoembolization. Patients classified as 
responders to the first TACE session may be ideal candi-
dates for TACE therapy. Notably, several previous stud-
ies have shown that patients who showed no response 
to the first TACE session and received further TACE 
therapy achieved an objective response and similar sur-
vival outcomes to those who responded to the first TACE 
session [25, 26]. However, a global non-interventional 
prospective study called OPTIMIS showed that after 
repeated TACE therapy, the objective response rate 
gradually decreased, whereas the progressive disease rate 
increased [27]. Recent evidence has also indicated that 
when patients progress, their liver function significantly 
decreases; moreover, switching to sorafenib is difficult 
[28]. Our survival analysis suggested that compared with 
responders, non-responders had a poorer prognosis and 
may not benefit from further TACE sessions. Thus, other 
evidence-based treatments, such as ablation or systemic 
therapy combined with TACE, should be strongly recom-
mended for non-responder groups.

This study has several limitations. First, this was a ret-
rospective study; thus, some bias between the medical 
record system and real practice is inevitable. Thus, fur-
ther prospective multicenter studies are needed to opti-
mize the performance of DSA-Net. Second, although 
CT- or US-based models have better performance for 
predicting treatment response than do DSA-based 
models, the DSA-based model can directly and rapidly 
determine arterial blood supply, which may allow cli-
nicians to adjust therapeutic schedules promptly. Fur-
thermore, we found that better segmentation results 
improved the performance of the predictive models, 
and the performance of Model 2 can be improved fur-
ther than that of the model based on the ground truth. 
Thus, the DSA-based model still offers higher predic-
tion performance than the current accuracy of seg-
mentation by further integrating pathological results 

with the tumor microenvironment. Third, the majority 
of Chinese HCC patients have chronic HBV infection, 
whereas 86% of the HCC patients enrolled in this study 
had HBV infection. Our results showed that HBV infec-
tion was associated with treatment response, which 
was consistent with previous studies that demonstrated 
that HBV infection affects HCC therapy treatment 
response and prognosis [29]. Additionally, the major 
risk factors for HCC vary across different regions, such 
as alcohol abuse, obesity, and type-2 diabetes, which 
are considered predominant causes of HCC in other 
countries [30]. Thus, large-scale external validations in 
HBV endemic and non-endemic areas are necessary. 
Finally, to eliminate the influence of confounding fac-
tors, several patients with BCLC stage B who received 
chemoembolization with drug-eluting beads were not 
included. Hence, to determine the real-world clinical 
benefit of DSA-Net for automatic tumor segmentation 
and prognostic prediction, we plan to conduct a multi-
therapy trial.

Conclusions
DSA-Net enabled automatic detection and segmenta-
tion of HCCs during TACE, which may aid clinicians 
to locate lesions rapidly. DSA-Net may provide clin-
ical-decision support by dividing HCC patients into 
two treatment response groups with diverse prognosis. 
Thus, DSA-Net may be a useful predictive tool for iden-
tifying patients who would benefit from TACE and pro-
viding a basis for clinical recommendations of TACE. 
For clinicians to fully accept and confidently apply the 
model to patient management, further validation stud-
ies in patients with different etiologies from different 
endemic areas are highly warranted.
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